137 research outputs found

    An accurate method to correct atmospheric phase delay for InSAR with the ERA5 global atmospheric model

    Get PDF
    Differential SAR Interferometry (DInSAR) has proven its unprecedented ability and merits of monitoring ground deformation on a large scale with centimeter to millimeter accuracy. However, atmospheric artifacts due to spatial and temporal variations of the atmospheric state often affect the reliability and accuracy of its results. The commonly-known Atmospheric Phase Screen (APS) appears in the interferograms as ghost fringes not related to either topography or deformation. Atmospheric artifact mitigation remains one of the biggest challenges to be addressed within the DInSAR community. State-of-the-art research works have revealed that atmospheric artifacts can be partially compensated with empirical models, point-wise GPS zenith path delay, and numerical weather prediction models. In this study, we implement an accurate and realistic computing strategy using atmospheric reanalysis ERA5 data to estimate atmospheric artifacts. With this approach, the Line-of-Sight (LOS) path along the satellite trajectory and the monitored points is considered, rather than estimating it from the zenith path delay. Compared with the zenith delay-based method, the key advantage is that it can avoid errors caused by any anisotropic atmospheric phenomena. The accurate method is validated with Sentinel-1 data in three different test sites: Tenerife island (Spain), Almería (Spain), and Crete island (Greece). The effectiveness and performance of the method to remove APS from interferograms is evaluated in the three test sites showing a great improvement with respect to the zenith-based approach.Peer ReviewedPostprint (published version

    Atmospheric artifacts correction for InSAR using empirical model and numerical weather prediction models

    Get PDF
    lnSAR has been proved its unprecedented ability and merits of monitoring ground deformation on large scale with centimeter to millimeter scale accuracy. However, several factors affect the reliability and accuracy of its applications. Among them, atmospheric artifacts due to spatial and temporal variations of atmosphere state often pose noise to interferograms. Therefore, atmospheric artifacts m itigalion remains one of the biggest challenges to be addressed in the In SAR community. State-of-the-art research works have revealed atmospheric artifacts can be partially compensated with empirical models, temporal-spatial filtering approach in lnSAR time series, pointwise GPS zenith path delay and numerical weather prediction models. In this thesis, firstly, we further develop a covariance weighted linear empirical model correction method. Secondly, a realistic LOS direction integration approach based on global reanalysis data is employed and comprehensively compared with the conventional method that integrates along zenith direction. Finally, the realistic integration method is applied to local WRF numerical forecast model data. l'vbreover, detailed comparisons between different global reanalysis data and local WRF model are assessed. In terms of empirical models correcting methods, many publications have studied correcting stratified tropospheric phase delay by assuming a linear model between them and topography. However, most of these studies ha\19 not considered the effect of turbulent atmospheric artefacts when adjusting the linear model to data. In this thesis, an improved technique that minimizes the influence of turbulent atmosphere in the model adjustment has been presented. In the proposed algorithm, the model is adjusted to the phase differences of pixels instead of using the unwrapped phase of each pixel. In addition, the different phase differences are weighted as a function of its APS covariance estimated from an empirical variogram to reduce in the model adjustment the impact of pixel pairs with significant turbulent atmosphere. The performance of the proposed method has been validated with both simulated and real Sentinel-1 SAR data in Tenerife island, Spain. Considering methods using meteorological observations to mitigate APS, an accurate realistic com puling strategy utilizing global atmospheric reanalysis data has been implemented. With the approach, the realistic LOS path along satellite and the monitored points is considered, rather than converting from zenith path delay. Com pared with zenith delay based method, the biggest advantage is that it can avoid errors caused by anisotropic atmospheric behaviour. The accurate integration method is validated with Sentinel-1 data in three test sites: Tenerife island, Spain, Almeria, Spain and Crete island, Greece. Compared to conventional zenith method, the realistic integration method shows great improvement. A variety of global reanalysis data are available from different weather forecasting organizations, such as ERA-Interim, ERAS, MERRA2. In this study, the realistic integration mitigation method is assessed on these different reanalysis data. The results show that these data are feasible to mitigate APS to some extent in most cases. The assessment also demonstrates that the ERAS performs the best statistically, compared to other global reanalysis data. l'vbreover, as local numerical weather forecast models have the ability to predict high spatial resolution atmospheric parameters, by using which, it has the potential to achieve APS mitigation. In this thesis, the realistic integration method is also employed on the local WRF model data in Tenerife and Almeria test s ites. However, it turns out that the WRF model performs worse than the original global reanalysis data.Las técnicas lnSAR han demostrado su capacidad sin precedentes y méritos para el monitoreo de la deformaci6n del suelo a gran escala con una precisión centimétrica o incluso milimétrica. Sin embargo, varios factores afectan la fiabilidad y precisión de sus aplicaciones. Entre ellos, los artefactos atmosféricos debidos a variaciones espaciales y temporales del estado de la atm6sfera a menudo añaden ruido a los interferogramas. Por lo tanto, la mitigación de los artefactos atmosféricos sigue siendo uno de los mayores desafíos a abordar en la comunidad lnSAR. Los trabajos de investigaci6n de vanguardia han revelado que los artefactos atmosféricos se pueden compensar parcialmente con modelos empíricos, enfoque de filtrado temporal-espacial en series temporales lnSAR, retardo puntual del camino cenital con GPS y modelos numéricos de predicción meteorológica. En esta tesis, en primer lugar, desarrollamos un método de corrección de modelo empírico lineal ponderado por covarianza. En segundo lugar, se emplea un enfoque realista de integracion de dirección LOS basado en datos de reanálisis global y se compara exhaustivamente con el método convencional que se integra a lo largo de la dirección cenital. Finalmente, el método de integraci6n realista se aplica a los datos del modelo de pronóstico numérico WRF local. Ademas, se evalúan las comparaciones detalladas entre diferentes datos de reanálisis global y el modelo WRF local. En términos de métodos de corrección con modelos empíricos, muchas publicaciones han estudiado la corrección del retraso estratificado de la fase troposférica asumiendo un modelo lineal entre ellos y la topografía. Sin embargo, la mayoría de estos estudios no han considerado el efecto de los artefactos atmosféricos turbulentos al ajustar el modelo lineal a los datos. En esta tesis, se ha presentado una técnica mejorada que minimiza la influencia de la atm6sfera turbulenta en el ajuste del modelo. En el algoritmo propuesto, el modelo se ajusta a las diferencias de fase de los pixeles en lugar de utilizar la fase sin desenrollar de cada pixel. Además, las diferentes diferencias de fase se ponderan en función de su covarianza APS estimada a partir de un variograma empírico para reducir en el ajuste del modelo el impacto de los pares de pixeles con una atm6sfera turbulenta significativa. El rendimiento del método propuesto ha sido validado con datos SAR Sentinel-1 simulados y reales en la isla de Tenerife, España. Teniendo en cuenta los métodos que utilizan observaciones meteorológicas para mitigar APS, se ha implementado una estrategia de computación realista y precisa que utiliza datos de reanálisis atmosférico global. Con el enfoque, se considera el camino realista de LOS a lo largo del satélite y los puntos monitoreados, en lugar de convertirlos desde el retardo de la ruta cenital. En comparación con el método basado en la demora cenital, la mayor ventaja es que puede evitar errores causados por el comportamiento atmosférico anisotrópico. El método de integración preciso se valida con los datos de Sentinel-1 en tres sitios de prueba: la isla de Tenerife, España, Almería, España y la isla de Creta, Grecia. En comparación con el método cenital convencional, el método de integración realista muestra una gran mejora.Postprint (published version

    Atmospheric artifacts correction for InSAR using empirical model and numerical weather prediction models

    Get PDF
    lnSAR has been proved its unprecedented ability and merits of monitoring ground deformation on large scale with centimeter to millimeter scale accuracy. However, several factors affect the reliability and accuracy of its applications. Among them, atmospheric artifacts due to spatial and temporal variations of atmosphere state often pose noise to interferograms. Therefore, atmospheric artifacts m itigalion remains one of the biggest challenges to be addressed in the In SAR community. State-of-the-art research works have revealed atmospheric artifacts can be partially compensated with empirical models, temporal-spatial filtering approach in lnSAR time series, pointwise GPS zenith path delay and numerical weather prediction models. In this thesis, firstly, we further develop a covariance weighted linear empirical model correction method. Secondly, a realistic LOS direction integration approach based on global reanalysis data is employed and comprehensively compared with the conventional method that integrates along zenith direction. Finally, the realistic integration method is applied to local WRF numerical forecast model data. l'vbreover, detailed comparisons between different global reanalysis data and local WRF model are assessed. In terms of empirical models correcting methods, many publications have studied correcting stratified tropospheric phase delay by assuming a linear model between them and topography. However, most of these studies ha\19 not considered the effect of turbulent atmospheric artefacts when adjusting the linear model to data. In this thesis, an improved technique that minimizes the influence of turbulent atmosphere in the model adjustment has been presented. In the proposed algorithm, the model is adjusted to the phase differences of pixels instead of using the unwrapped phase of each pixel. In addition, the different phase differences are weighted as a function of its APS covariance estimated from an empirical variogram to reduce in the model adjustment the impact of pixel pairs with significant turbulent atmosphere. The performance of the proposed method has been validated with both simulated and real Sentinel-1 SAR data in Tenerife island, Spain. Considering methods using meteorological observations to mitigate APS, an accurate realistic com puling strategy utilizing global atmospheric reanalysis data has been implemented. With the approach, the realistic LOS path along satellite and the monitored points is considered, rather than converting from zenith path delay. Com pared with zenith delay based method, the biggest advantage is that it can avoid errors caused by anisotropic atmospheric behaviour. The accurate integration method is validated with Sentinel-1 data in three test sites: Tenerife island, Spain, Almeria, Spain and Crete island, Greece. Compared to conventional zenith method, the realistic integration method shows great improvement. A variety of global reanalysis data are available from different weather forecasting organizations, such as ERA-Interim, ERAS, MERRA2. In this study, the realistic integration mitigation method is assessed on these different reanalysis data. The results show that these data are feasible to mitigate APS to some extent in most cases. The assessment also demonstrates that the ERAS performs the best statistically, compared to other global reanalysis data. l'vbreover, as local numerical weather forecast models have the ability to predict high spatial resolution atmospheric parameters, by using which, it has the potential to achieve APS mitigation. In this thesis, the realistic integration method is also employed on the local WRF model data in Tenerife and Almeria test s ites. However, it turns out that the WRF model performs worse than the original global reanalysis data.Las técnicas lnSAR han demostrado su capacidad sin precedentes y méritos para el monitoreo de la deformaci6n del suelo a gran escala con una precisión centimétrica o incluso milimétrica. Sin embargo, varios factores afectan la fiabilidad y precisión de sus aplicaciones. Entre ellos, los artefactos atmosféricos debidos a variaciones espaciales y temporales del estado de la atm6sfera a menudo añaden ruido a los interferogramas. Por lo tanto, la mitigación de los artefactos atmosféricos sigue siendo uno de los mayores desafíos a abordar en la comunidad lnSAR. Los trabajos de investigaci6n de vanguardia han revelado que los artefactos atmosféricos se pueden compensar parcialmente con modelos empíricos, enfoque de filtrado temporal-espacial en series temporales lnSAR, retardo puntual del camino cenital con GPS y modelos numéricos de predicción meteorológica. En esta tesis, en primer lugar, desarrollamos un método de corrección de modelo empírico lineal ponderado por covarianza. En segundo lugar, se emplea un enfoque realista de integracion de dirección LOS basado en datos de reanálisis global y se compara exhaustivamente con el método convencional que se integra a lo largo de la dirección cenital. Finalmente, el método de integraci6n realista se aplica a los datos del modelo de pronóstico numérico WRF local. Ademas, se evalúan las comparaciones detalladas entre diferentes datos de reanálisis global y el modelo WRF local. En términos de métodos de corrección con modelos empíricos, muchas publicaciones han estudiado la corrección del retraso estratificado de la fase troposférica asumiendo un modelo lineal entre ellos y la topografía. Sin embargo, la mayoría de estos estudios no han considerado el efecto de los artefactos atmosféricos turbulentos al ajustar el modelo lineal a los datos. En esta tesis, se ha presentado una técnica mejorada que minimiza la influencia de la atm6sfera turbulenta en el ajuste del modelo. En el algoritmo propuesto, el modelo se ajusta a las diferencias de fase de los pixeles en lugar de utilizar la fase sin desenrollar de cada pixel. Además, las diferentes diferencias de fase se ponderan en función de su covarianza APS estimada a partir de un variograma empírico para reducir en el ajuste del modelo el impacto de los pares de pixeles con una atm6sfera turbulenta significativa. El rendimiento del método propuesto ha sido validado con datos SAR Sentinel-1 simulados y reales en la isla de Tenerife, España. Teniendo en cuenta los métodos que utilizan observaciones meteorológicas para mitigar APS, se ha implementado una estrategia de computación realista y precisa que utiliza datos de reanálisis atmosférico global. Con el enfoque, se considera el camino realista de LOS a lo largo del satélite y los puntos monitoreados, en lugar de convertirlos desde el retardo de la ruta cenital. En comparación con el método basado en la demora cenital, la mayor ventaja es que puede evitar errores causados por el comportamiento atmosférico anisotrópico. El método de integración preciso se valida con los datos de Sentinel-1 en tres sitios de prueba: la isla de Tenerife, España, Almería, España y la isla de Creta, Grecia. En comparación con el método cenital convencional, el método de integración realista muestra una gran mejora

    Atmospheric artifacts correction with a covariance-weighted linear model over mountainous regions

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Mitigating the atmospheric phase delay is one of the largest challenges faced by the differential synthetic aperture radar (SAR) interferometry community. Recently, many publications have studied correcting the stratified tropospheric phase delay by assuming a linear model between them and the topography. However, most of these studies have not considered the effect of turbulent atmospheric artifacts when adjusting the linear model to data. In this paper, we present an improved technique that minimizes the influence of the turbulent atmosphere in the model adjustment. In the proposed algorithm, the model is adjusted to the phase differences of pixels instead of using the unwrapped phase of each pixel. In addition, the different phase differences are weighted as a function of its atmospheric phase screen covariance estimated from an empirical variogram to reduce, in the model adjustment, the impact of pixel pairs with a significant turbulent atmosphere. The good performance of the proposed method has been validated with both the simulated and real Sentinel-1A SAR data in the mountainous area of Tenerife island, Spain.Peer ReviewedPostprint (author's final draft

    Multitemporal SAR and polarimetric SAR optimization and classification: Reinterpreting temporal coherence

    Get PDF
    In multitemporal synthetic aperture radar (SAR) and polarimetric SAR (PolSAR), coherence is a capital parameter to exploit common information between temporal acquisitions. Yet, its use is limited to high coherences. This article proposes the analysis of low-coherence scenarios by introducing a reinterpretation of coherence. It is demonstrated that coherence results from the product of two terms accounting for coherent and radiometric changes, respectively. For low coherences, the first term presents low values, preventing its exploitation for information retrieval. The information provided by the second term can be used in these circumstances to exploit common information. This second term is proposed, as an alternative to coherence, for information retrieval for low coherences. Besides, it is shown that polarimetry allows the temporal optimization of its values. To prove the benefits of this approach, multitemporal SAR and PolSAR data classification is considered as a tool, showing that improvements of the classification overall accuracy may range between 20% and 50%, compared to classification based on coherence.This work was supported in part by the National Natural Science Foundation of China under Grant 61871413, in part by the China Scholarship Council under Grant 2020006880033, and in part by the Project INTERACT funded by the Spanish MCIN/AEI/10.13039/501100011033 under Grant PID2020-114623RB-C32.Peer ReviewedPostprint (author's final draft

    Multiobjective Image Color Quantization Algorithm Based on Self-Adaptive Hybrid Differential Evolution

    Get PDF
    In recent years, some researchers considered image color quantization as a single-objective problem and applied heuristic algorithms to solve it. This paper establishes a multiobjective image color quantization model with intracluster distance and intercluster separation as its objectives. Inspired by a multipopulation idea, a multiobjective image color quantization algorithm based on self-adaptive hybrid differential evolution (MoDE-CIQ) is then proposed to solve this model. Two numerical experiments on four common test images are conducted to analyze the effectiveness and competitiveness of the multiobjective model and the proposed algorithm

    A Convergent Differential Evolution Algorithm with Hidden Adaptation Selection for Engineering Optimization

    Get PDF
    Many improved differential Evolution (DE) algorithms have emerged as a very competitive class of evolutionary computation more than a decade ago. However, few improved DE algorithms guarantee global convergence in theory. This paper developed a convergent DE algorithm in theory, which employs a self-adaptation scheme for the parameters and two operators, that is, uniform mutation and hidden adaptation selection (haS) operators. The parameter self-adaptation and uniform mutation operator enhance the diversity of populations and guarantee ergodicity. The haS can automatically remove some inferior individuals in the process of the enhancing population diversity. The haS controls the proposed algorithm to break the loop of current generation with a small probability. The breaking probability is a hidden adaptation and proportional to the changes of the number of inferior individuals. The proposed algorithm is tested on ten engineering optimization problems taken from IEEE CEC2011

    Ground deformation monitoring over Xinjiang coal fire area by an adaptive ERA5-corrected stacking-InSAR method

    Get PDF
    Underground coal fire is a global geological disaster that causes the loss of resources as well as environmental pollution. Xinjiang, China, is one of the regions suffering from serious underground coal fires. The accurate monitoring of underground coal fires is critical for management and extinguishment, and many remote sensing-based approaches have been developed for monitoring over large areas. Among them, the multi-temporal interferometric synthetic aperture radar (MT-InSAR) techniques have been recently employed for underground coal fires-related ground deformation monitoring. However, MT-InSAR involves a relatively high computational cost, especially when the monitoring area is large. We propose to use a more cost-efficient Stacking-InSAR technique to monitor ground deformation over underground coal fire areas in this study. Considering the effects of atmosphere on Stacking-InSAR, an ERA5 data-based estimation model is employed to mitigate the atmospheric phase of interferograms before stacking. Thus, an adaptive ERA5-Corrected Stacking-InSAR method is proposed in this study, and it is tested over the Fukang coal fire area in Xinjiang, China. Based on original and corrected interferograms, four groups of ground deformation results were obtained, and the possible coal fire areas were identified. In this paper, the ERA5 atmospheric delay products based on the estimation model along the LOS direction (D-LOS) effectively mitigate the atmospheric phase. The accuracy of ground deformation monitoring over a coal fire area has been improved by the proposed method choosing interferograms adaptively for stacking. The proposed Adaptive ERA5-Corrected Stacking-InSAR method can be used for efficient ground deformation monitoring over large coal fire areas.This research was supported in part by the National Natural Science Foundation of China (Grant No.41874044 and Grant No. 42004011), in part by project G2HOTSPOTS (PID2021-122142OB- I00) from the MCIN /AEI /10.13039 /501100011033 /FEDER, UE and in part by China Postdoctoral Science Foundation (Grant No. 2020M671646). At the same time, the research was also funded by the Construction Program of Space-Air-Ground-Well Cooperative Awareness Spatial Information Project (B20046) and National Key R&D Program of China (Grant No. 2022YFE0102600).Peer ReviewedPostprint (published version
    corecore